
D. Bala MuraliKrishnaInt. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 2) September 2015, pp.49-53

 www.ijera.com 49|P a g e

A Novel Framework for Short Tandem Repeats (STRs) Using

Parallel String Matching

D. Bala MuraliKrishna, Ch. Someswara Rao.
Department of Computer Science, S.R.K.R Engineering College, Bhimavaram, AP, India.

Associate Professor, Department of Computer Science, S.R.K.R Engineering College, Bhimavaram, AP, India.

Abstract
Short tandem repeats (STRs) have become important molecular markers for a broad range of applications, such

as genome mapping and characterization, phenotype mapping, marker assisted selection of crop plants and a

range of molecular ecology and diversity studies. These repeated DNA sequences are found in both Plants and

bacteria. Most of the computer programs that find STRs failed to report its number of occurrences of the

repeated pattern, exact position and it is difficult task to obtain accurate results from the larger datasets. So we

need high performance computing models to extract certain repeats. One of the solution is STRs using parallel

string matching, it gives number of occurrences with corresponding line number and exact location or position

of each STR in the genome of any length. In this, we implemented parallel string matching using JAVA Multi-

threading with multi core processing, for this we implemented a basic algorithm and made a comparison with

previous algorithms like Knuth Morris Pratt, Boyer Moore and Brute force string matching algorithms and from

the results our new basic algorithm gives better results than the previous algorithms. We apply this algorithm in

parallel string matching using multi-threading concept to reduce the time by running on multicore processors.

From the test results it is shown that the multicore processing is a remarkably efficient and powerful compared

to lower versions and finally this proposed STR using parallel string matching algorithm is better than the

sequential approaches.

Keywords: computing model, DNA, STR, parallel string matching, multicore processing.

I. Introduction
DNA molecules are subject to a variety of

mutational events. One of the less well understood is

tandem duplicationin which a stretch of DNA, which

we call the pattern, is converted into two or more

copies, each following the preceding one in a

contiguous fashion. For example we could have

consider the below String TCGGCGGCGGA, and the

pattern CGG.

In which the single occurrence of triplet CGG

has been transformed into three identical, adjacent

copies. The result of a tandem duplication event is

termed a tandem repeat. Over time, individual copies

within a tandem repeat may undergo additional,

uncoordinated mutations so that typically, only

approximate tandem copies are present. Tandem

repeats are presumed to occur frequently in genomic

sequences, comprising perhaps 10% or more of the

human genome [1]. But, accurate characterization of

the properties of tandem repeats has been limited by

the inability to easily detect them. In recent years, the

discovery of the trinucleotide repeat diseases has

piqued interest in tandem repeats.

STRs (Short Tandem Repeats) are the genetic

loci where one or few bases are repeated for varying

numbers of times. Such repetitions occur primarily

due to slipped-strand impairing and subsequent

error(s) during DNA replication, repair, or

recombination [1]. STRs comprising 2–6 base pairs

long, occur frequently and are ubiquitously

interspersed in many genomes [2, 3]. The biological

importance of STR tracts has been clearly delineated.

STR loci show extensive length polymorphism, and

hence they are widely used in DNA fingerprinting

and diversity studies [4, 5]. They are also considered

as ideal genetic markers for the construction of high-

density linkage maps.In spite of its high significance,

a bioinformatics tool for the analysis of these regions

is not available.

Available algorithms directly or indirectly detect

tandem repeats. However, there are many limitations

with these algorithms [6].The drawbacks are high

computational time required by the algorithm and

their inability to predict the positions of STRs in the

genome.Finally, researchers have to understand the

classical methods of pattern matching to develop new

efficient algorithms [7-10]. In this work, we describe

a program called STRs using parallel string matching

that uses Multi-threading to find STRs on multicore

processors. The program Framework for STRs using

parallel string matching locates repeats with

RESEARCH ARTICLE OPEN ACCESS

D. Bala MuraliKrishnaInt. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 2) September 2015, pp.49-53

 www.ijera.com 50|P a g e

patternsexact positon, line number and number of

occurrences of large number of files and directories

taking as input.

A serious comparison between different tools

should, of course, be performed by a third party

against a sufficient number of carefully selected test

problems, carefully tuning many different search

parameters; meanwhile we can say that in the case of

naive runs with default parameters on easy problems,

all the above programs appear to output basically

equivalent results. With the developments of new

string matching techniques, efficiency and speed are

the main factors in deciding among different options

available for each application area [11-13].However,

a major drawback of all such tools is that, when

running against very long sequences, they produce a

large amount of cumbersome results that require a

painstaking interpretation. In order to provide the

user with some capability of grasping the STRs at

first glance and looking over the drawbacks for large

sequencing files, we decided that the only way to do

this is by introducing parallel programing concept

into STRs identification [14-17]. And since, as far as

we know, no tool with Parallel programing feature is

as yet available [18, 19], a novel framework for the

STRs using parallel string matching of the results

compared with sequential approach has been devised.

STRs parallel string approach developed for

scanning genomes to find repeats of any length, their

exact position on chromosome and number of

occurrence. It can accept large sequences and large

number of files and directories up to GBs as input

can be searched simultaneously on multicore

processors. It divides the files and directories for

different cores and run these files parallel then after it

gives the files getting the output. Thus, the running

time of the program is greatly reduced. The

advantages over many other programs developed for

STR identification includes its ability to do parallel

programing using Multi-threading with multi core

processingto search patterns repeated for a number of

times of large input files and to give the exact

position and number of occurrences of the pattern in

the genome.

II. Methodology
Our goal is efficiently search STRs in large

genomes of given pattern. The proposed

methodology has two phases, Sequential and Parallel

approaches. We model a basic algorithm which is

giving better results than the previous algorithms like

Boyer Moore, KMP and Brute force. In the first

phase we apply on Sequential approach and later in

the second phase the basic algorithm is to be applied

on parallel string matching using Multi-threading

with multi core processing concept. Finally we give a

comparison between Boyer Moore, KMP and Brute

force with our basic algorithm in sequential approach

and then comparison between sequential approach

and parallel approach of basic algorithm.

Methodology comprises of two phases

Phase 1:STR using Sequential String matching

approach

The Sequential string matching approach uses

the basic algorithm which is better than the previous

algorithms and it processes the input file line by line

from a document and run sequential manner to

finding the repeats. The algorithm works with

Improved Right Prefix concept, the below example

demonstrate the working of the algorithm.

Figure 1: Example for Sequential pattern searching

Phase 2:STR Using Parallel String matching

approach

In The second Phase “Short Tandem Repeats

(STRs) Using Parallel String Matching” we apply the

above basic algorithm to this concept and it processes

the input file at first we take the input as a string or

text. The required text that is to be searched is further

divided into further small patterns or processes and

all this patterns are passed on the basic algorithm and

produce the result as number of occurrences of

repeated pattern as shown in the Fig.2 below.

Figure 2: Parallel approach using Multi-Threading

concept

G G C C G A G A A G A T A

 G A T C

D. Bala MuraliKrishnaInt. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 2) September 2015, pp.49-53

 www.ijera.com 51|P a g e

Because threads can operate independently on

different areas of an array for this algorithm, you will

see a clear performance boost on multicore

architectures compared to a sequential algorithm that

would iterate over each process in the array. It uses

the parallel execution of multi cores at a time which

will results the speedup in the number of cores with

minimal effort, because the Multi-threading takes

care of maximizing parallelism.

The Flowchart of the Improved Right Prefix is

shown in Fig 3.It .scans the genome sequence line by

line for given input file and process the linefor given

pattern length e.g. (ATGCATGCATGC)is a

nucleotide with pattern count =3.If STR found then it

identifies the position of the pattern and then

increment the count value and search for next STR, if

not then again reads the line of sequence. The process

is continues until all the given patterns are found then

it gives the number of occurrences of the pattern with

line number and position.

Figure 3: Flowchart of Improved Right Prefix

algorithm

III. Results and Discussion

The sequential approach gives the better results

by using the basic algorithm compared to previous

algorithms Boyer Moore, KMP and Brute force with

additional features like exact position with line

number and number of occurrences. Then this basic

algorithm reduces the time when we are applying in

parallel string matching using Multi-threading with

multi core processing,the results are illustrated in the

histogram below. The sequential approach took

80ms, the parallel string matching using Multi-

threading approach took 40ms.

The Fig 4 shows Execution time vs File size on

sequential search withBrute Force, Improved Right

Prefix Algorithm. This graph shows the performance

difference between Brute Force,Improved Right

Prefix algorithms. From the graph we clearly observe

that IRP is better compared to Brute Force.

Figure 4: Histogram for Brute Forcevs IRP (Time vs

File size)

The Fig 5 shows Execution time vs File size on

sequential search with KMP, Improved Right Prefix

Algorithm. This graph shows the performance

difference between KMP,Improved Right Prefix

algorithms. From the graph we clearly observe that

IRP is better compared to KMP.The Fig 6 shows

Execution time vs File size using Boyer Moore, IRP

Algorithm on Sequential search. From the graph we

clearly observe that IRP is much better than Boyer

Moore.

0

200

400

600

800

1000

5 10 15 20 25 30

Ti
m

e
(m

s)

File Size (MB)

Brute Force vs IRP

Bruteforce IRP

D. Bala MuraliKrishnaInt. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 2) September 2015, pp.49-53

 www.ijera.com 52|P a g e

Figure 5: Histogram for KMPvs IRP (Time vs File

size)

The most crucial stage in achieving a new

successful system and in giving confidence on the

system for the users that will work efficiently and

effectively. The system will be implemented only

after thorough testing and if it is found to work

according to the specification. For testing our

proposed system we will take the gene sequence data

set, consists of the four nucleotides A, C, G and T

(standing for adenine, cytosine, guanine, and

thymine, respectively) used to encode DNA.

Figure 6: Histogram for Boyer Moore vs IRP (Time

vs File size)

Therefore, the alphabet is O= {A, C, G, T}.

The text is consisted of 7, 50,000 records. Our

algorithm tested on different cores like 2, 4, 8, 12

etc., in the Fig 8 (Table). Here we put some

achievements what we develop and observe, and

finally our system shows that parallel approach is

much better than sequential approach with multi core

processor. The Fig 7 shows (Histogram) Execution

time vs File size on sequential search and parallel

search with Improved Right Prefix. From the Fig (4,

5, 6) we clearly observe that IRP is better compared

to other approaches.

Figure 7: Histogram for Sequential vs Parallel

approach

Figure 8: Table of Parallel execution times with

different cores

IV. Conclusion
In this paper we performed a comparisonbetween

Knuth Morris Pratt, Boyer Moore and Brute force

string matching algorithms with our improved right

prefix algorithm in sequential approach based on the

running time and in our tests with multicore

processing, we used strings of varying lengths and

texts of varying lengths. From the test results it is

shown that the improved right prefix algorithm is

extremely efficient in all cases. We apply this

algorithm in parallel string matching using multi-

0

200

400

600

800

1000

5 10 15 20 25 30 35

Ti
m

e
(m

s)

File Size (MB)

KMP vs IRP

KMP IRP

0

200

400

600

800

1000

5 10 15 20 25 30

Ti
m

e
(m

s)

File Size (MB)

Boyer Moore vs IRP

Boyer Moore IRP

0

200

400

600

800

1000

5 10 15 20 25 30

Ti
m

e
(m

s)

File Size (MB)

Sequential Approach vs Parallel
Approach

Sequential Parallel

Number of Cores Parallel Execution Time (MS)

2 11026

4 8329

8 4208

12 2876

D. Bala MuraliKrishnaInt. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 5, Issue 9, (Part - 2) September 2015, pp.49-53

 www.ijera.com 53|P a g e

threading concept to reduce the time by running on

multicore processors. We conclude that STR using

parallel string matching is the most efficient

compared to earlier versions. As a future

enhancement, we apply this algorithmto fork and join

concept in JAVA SE7 of parallel string matching

algorithm thereby finding the most efficient

algorithm which can be used in many fields such as

cryptography, molecular biology. Thus the problem

of matching becomes easier.

References

[1] Angelika Merkel and Neil Gemmell (2008)

Detecting short tandem repeats from

genome data: opening the software black

box, VOL 9. NO 5. 355-366.

[2] Gary Benson (1998) Tandem Repeats

Finder: A program to analyze DNA

sequences Nucleic Acids Research, 1999,

Vol_ 27, No. 2 573_580.

[3] Karen Norrgard (Write Science Right)

(2008) Forensics, DNA fingerprinting, and

CODIS. Nature Education 1(1):35.

[4] Kathleen McNamara-Schroeder, Cheryl

Olonan, Simon Chu, Maria C. Montoya,

MahtaAlviri,ShannonGinty, and John J.

Love (2005) DNA Fingerprint Analysis of

Three Short Tandem Repeat (STR) Loci for

Biochemistry and Forensic Science

Laboratory Courses November 21, and in

revised form, April 3, Vol. 34, No. 5, pp.

378–383, 2006.

[5] KoichiroDoi, TakuMonjo Pham H.

Hoang, Jun Yoshimura, Hideaki Yurino, Jun

Mitsui, Hiroyuki Ishiura, Yuji Takahashi,

Yaeko Ichikawa, Jun Goto, Shoji Tsuji,

and Shinichi

MorishitaRapid(2014) detection of expanded

short tandem repeats in personal genomics

using hybrid sequencing

Bioinformatics 30 (6): 815-822.

[6] TamannaAnwarandAsad U Khan (2006)

SSRscanner: a program for reporting

distribution and exact location of simple

sequence repeats.

[7] Jonathan L., “Analysis of Fundamental

Exact and Inexact Pattern Matching

Algorithms,” Technical Document, Stanford

University, 2004.

[8] ChintaSomeswararao, K Butchiraju, S

ViswanadhaRaju, “Recent Advancement is

Parallel Algorithms for String matching on

computing models - A survey and

experimental results”, LNCS, Springer,

pp.270-278, ISBN: 978-3-642-29279-8,

2011.

[9] ChintaSomeswararao, K Butchiraju, S

ViswanadhaRaju, “PDM data classification

from STEP- an object oriented String

matching approach”, IEEE conference on

Application of Information and

Communication Technologies, pp.1-9, ISBN:

978-1-61284-831-0, 2011.

[10] ChintaSomeswararao, K Butchiraju, S

ViswanadhaRaju, “Recent Advancement is

Parallel Algorithms for String matching - A

survey and experimental results”, IJAC, Vol

4 issue 4, pp-91- 97, 2012.

[11] Simon Y. and Inayatullah M., “Improving

Approximate Matching Capabilities for

Meta Map Transfer Applications,”

Proceedings of Symposium on Principles

and Practice of Programming in Java,

pp.143 147, 2004.

[12] ChintaSomeswararao, K Butchiraju, S

ViswanadhaRaju, “Parallel Algorithms for

String Matching Problem based on Butterfly

Model”, pp.41-56, IJCST, Vol. 3, Issue 3,

July – Sept, ISSN 2229-4333, 2012.

[13] ChintaSomeswararao, K Butchiraju, S

ViswanadhaRaju, “Recent Advancement is

String matching algorithms- A survey and

experimental results”, IJCIS, Vol 6 No 3,

pp.56-61, 2013.

[14] Geist, A., Beguelin, A., Dongarra, J., Jiang,

W., Manchek, R. & V., S. “PVM: Parallel

Virtual Machine”, A Users Guide and

Tutorial for Networked Parallel Computing,

MIT Press. 1994.

[15] Grama, A., Karypis, G., Kumar, V. &

Gupta, A. “Introduction to Parallel

Computing”, Addison Wesley, 2003.

[16] Leow, Y., Ng, C. &W.F.,W.. “Generating

hardware from OpenMP programs”,

International Conference on Field

Programmable Technology, pp. 73–80,

2006.

[17] Marr, D. T., Binns, F., Hill, D. L., Hinton,

G., Koufaty, D. A., Miller, J. A. & Upton,

M..“Hyper-Threading Technology

Architecture and Microarchitecture”, Intel

Technology Journal, pp. 4–15, 2002.

[18] Donald Knuth; James H. Morris, Jr,

Vaughan Pratt, "Fast pattern matching in

strings". SIAM Journal on Computing, pp-

323–350, 1977.

[19] Z. Galil, “Optimal parallel algorithms for

string matching,” in Proc. 16th Annu. ACM

symposium on Theory of computing, pp.

240-248, 1984.

http://www.ncbi.nlm.nih.gov/pubmed/?term=Monjo%20T%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hoang%20PH%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hoang%20PH%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Hoang%20PH%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yoshimura%20J%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Yurino%20H%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mitsui%20J%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mitsui%20J%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mitsui%20J%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ishiura%20H%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Takahashi%20Y%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ichikawa%20Y%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Goto%20J%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Tsuji%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Morishita%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Morishita%20S%5Bauth%5D
http://www.ncbi.nlm.nih.gov/pubmed/?term=Morishita%20S%5Bauth%5D

